
Graph Pattern Matching – Do We Have to Reinvent the
Wheel?

Andrey Gubichev∗

Technische Universität München
Germany

gubichev@in.tum.de

Manuel Then
Technische Universität München

Germany
then@in.tum.de

ABSTRACT
This paper presents an empirical study of how a wide spectrum of
systems handle the graph pattern matching problem. Our approach
is to take the well-known LUBM benchmark, model it across var-
ious domains (relational, RDF, property graph), and execute the
benchmark queries on the corresponding systems. We evaluate the
systems using a large data instance on a single machine (the largest
dataset is LUBM-8000, which contains over 1 billion RDF triples).
Additionally, we provide a brief analysis of how different cases
of graph pattern matching problem are stressed by the benchmark
queries. Our main finding is that, contrary to popular belief and var-
ious vendors’ claims, modern native graph stores do not necessarily
offer a competitive advantage over traditional relational and RDF
stores, even for the graph-specific problem of pattern matching. To
the best of our knowledge, this is the first independent empirical
comparison of different approaches towards pattern matching per-
formed on a large scale graph.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

Keywords
Graph-Structured Data, Benchmarking, RDF

1. INTRODUCTION
As graph processing problems continue to attract the interest of

both the research community and industry, the advent of seemingly
novel data management approaches can be observed in the field of
graph databases. Rapid development and adoption of new special-
ized graph databases may leave the impression that they substan-
tially outperform existing solutions. However, the challenges of
graph query processing often boil down to well-studied problems
of general data management, such as query optimization and mem-
ory management.

In this paper we consider one of the most fundamental prob-
lems in graph processing — pattern matching. We show that this
∗supported by the LDBC EU FP7 project
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org
GRADES’14, June 22 - 27 2014, Snowbird, UT, USA 2014
ACM 978-1-4503-2782-4/14/04 ...$15.00.
http://dx.doi.org/10.1145/2621934.2621944.

problem can be expressed in the different data models Resource
Description Framework (RDF), property graphs (PG) and the rela-
tional model. Therefore, we also demonstrate the pattern matching
problem’s solvability in a wide range of systems. We provide an
empirical study of five systems from these three domains, using the
well-known semantic web benchmark LUBM. In order to do so, we
model the LUBM dataset and a relevant subset of the benchmark’s
queries in these three domains, thus, giving every system the best
chance to perform well.

Specifically, our contributions are as follows: (i) we demonstrate
that LUBM queries provide a variety of challenging graph pattern
matching problems, (ii) we describe how the graph-shaped data of
LUBM can be stored and queried in a wide spectrum of data man-
agement domains, and (iii) we provide an extensive experimental
study of LUBM on different systems. Although LUBM is a very
popular benchmark in the Semantic Web area, so far there has been
little studies of how non-RDF systems perform on it. We find par-
ticularly interesting the comparison between novel graph stores and
classical relational database systems.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the LUBM benchmark which we will use for the
empirical study. Then, in Section 3 we describe the general prob-
lem of graph pattern matching and consider its important subprob-
lems that arise in LUBM queries. Section 4 reviews possible map-
pings of the LUBM benchmark into different data management do-
mains (relational, RDF, property graph). This discussion is fol-
lowed by a description of different systems that we used in our eval-
uation in Section 5. Section 7 references the related work. Finally,
Section 6 presents the main contribution of this work, the empirical
results of five different system on LUBM benchmark. Discussion
of our findings and conclusions are given in Section 8.

2. LEHIGH UNIVERSITY BENCHMARK
LUBM [3] is a well-known and widely used synthetic RDF

benchmark. It models a university scenario with universities,
departments, research groups, professors and students. Further,
LUBM provides an ontology (effectively a schema) for the data;
it describes for example that Full Professors are Professors or the
transitive relation between the universities’ suborganizations. The
benchmark data is produced by a data generator and can be of arbi-
trary size.

In our experiments we use scale factors 50 and 8000, i.e. the
datasets contain 50 and 8000 universities, respectively. LUBM-50
contains ca. 6.8 million unique triples; LUBM-8000 has ca. 1065
million triples.

LUBM provides 14 queries. In this paper we will focus on 9
of them: query 2, 4, 5, 6, 7, 8, 9, 12 and 14. Doing so, we omit
queries that are simple and/or have a sub-milliseconds runtime in

our benchmarks as such queries do not allow to distinguish between
the systems under test.

Besides SPARQL pattern matching, the LUBM queries also test
the reasoning capabilities of RDF systems. However, these capa-
bilities are orthogonal to the goals of this paper. We will, therefore,
simulate reasoning by both (i) re-writing the queries to take into
account the rules from the ontology, and (ii) saturating the datasets
with the inferred data (parts of the graph that are implied by the
ontology but not generated by the data generator). We report both
cases separately in our evaluation section.

In the first case, queries that ask for entities of a general type
(e.g., all Professors) are expanded to explicitly look for all spe-
cific subclasses of that type (e.g., AssociateProfessor and
FullProfessor). This hierarchy of types is suggested by the
ontology, but is missing in the data.

In the second case, the dataset itself is enriched with all the
facts that follow from the ontology rules. We will, for in-
stance, add the general type Professor to every node of type
AssociateProfessor, so that these nodes will be returned by
the query that searches for all professors. The inferred versions our
datasets contain 8.3 million and ca. 1.3 billion triples, respectively.

Although the generated dataset in LUBM is very regular and
does not have any particular RDF’s distinguishing properties, we
explain in the next section how its diverse set of queries test the
graph pattern matching capabilities of the system and, thus, make
LUBM a good candidate for benchmarking graph pattern matching
for both relational, RDF and property graph stores.

3. GRAPH PATTERN MATCHING
In this section we consider different flavors of graph pattern match-

ing and illustrate them with examples from the LUBM benchmark.

3.1 General Definition
The input of the subgraph pattern matching problem are two

graphs:

1. a graph G with nodes V and edges E, where nodes and edges
are labeled with strings. We denote the label of a node v and
an edge e as label(v) and label(e), respectively.

2. a query pattern, which can be viewed as a graph P = (Vp, Ep).
Here, the nodes and edges describe conditions that a sub-
graph of G must satisfy in order to be a match. Frequently,
the query pattern is a conjunction of smaller patterns that
together impose requirements on nodes and their neighbor-
hoods in the data graph.

Given a graph G, the pattern matching problem is to find all pos-
sible subgraphs of G that match a given pattern P . More precisely,
the match is defined in terms of

1. structural match (or isomorphism) between P and a candi-
date solution, and

2. conditions on labels of certain nodes and edges in a candi-
date solution (e.g., equality of given node labels in P and a
subgraph of G)

In the following we use the SPARQL Protocol and RDF Query
Language to describe query patterns. We note that SPARQL is not
the only way to express such queries; we merely use it because it
is well-known and has a concise SQL-inspired syntax. In the scope
of this paper it is sufficient to assume that a SPARQL query is a
set of (s, p, o) condition triples where s, o ∈ Vp and p ∈ Ep for
an edge between s and o. Two nodes and the edge between them

match the triple when all of its conditions are fulfilled. Elements
of the condition triple may be unbound variables that match any
node or edge. Conceptually, a query is evaluated by first finding all
matches for each pattern and then joining the respective matches
on their common variables. In the following we illustrate important
cases of pattern joins using queries from the LUBM benchmark.

3.2 Basic Patterns
Nodes and edges. The most basic graph pattern consists of a
single triple pattern that satisfies given conditions. In this case no
join is necessary. An example of this is LUBM’s query 14 that
requests all undergraduate students.

Neighborhoods and Stars. A second very important type of
graph patterns are neighborhoods, i.e. matches on the nodes which
are adjacent and edges that are incident to a given node. As an ex-
ample, LUBM query 1 asks for all graduate students that attend a
certain course. Here, all the nodes that are adjacent to the two nodes
labeled GraduateStudent and GraduateCourse0, respec-
tively, are answers to the query.

Neighborhood with multiple patterns1 around a central node, e.g.
as in LUBM query 4, are also referred to as star patterns.

Triangles. Triangle patterns look for three nodes adjacent to each
other. An example is the following simplified version of LUBM
query 2:

select ?x ?y ?z where {
?x undergraduateDegreeFrom ?y.
?x memberOf ?z.
?z subOrganizationOf ?y. }

Matching triangles is especially challenging from a query op-
timization point of view as potentially many intermediate results
need to be processed. Worst case-optimal join algorithms exist that
avoid such an explosion of intermediate results [7], however, to the
best of our knowledge, none of the systems considered in this paper
implement such an approach.

Fixed and variable length paths. A special case of graph
patterns are paths of fixed or variable length. The former occur
for example when the names of students who attend a given course
are queried. Variable length paths on the other hand are commonly
used to match hierarchical relationships. In LUBM query 12, for
example, all direct and transitive sub-organizations of a university
must be matched.

Depending on the internal graph representation of a particular
system, answering a path query requires a series of joins (in triple
stores or RDBMS) or some form of breadth-first expansion on the
graph (in native graph stores).

3.3 Patterns in LUBM queries
All LUBM queries use basic patterns. In addition, most queries

contain further patterns. Table 1 provides an overview of the used
patterns and, thus, of the queries’ characteristics.

1To distinguish star patterns from fixed length paths we only use
this term if three or more patterns are specified around the central
node.

Q2 Q4 Q5 Q6 Q7 Q8 Q9 Q12 Q14
Basic pattern x x x x x x x x x
Neighborhood x x x x x x x
Star x x x x
Triangle x x x
Path x x

Table 1: Query pattern types used in the LUBM queries

4. DATA MODELS
In this paper we concentrate on how different systems solve the

graph pattern matching problem. Doing pattern matching in database
systems requires us to (i) model the graph in the corresponding do-
main (which is trivial for graph stores, but requires additional effort
for relational systems), and (ii) express the graph pattern matching
queries in the query language or API of the system. Additionally,
since the benchmark in use – LUBM – requires RDF reasoning
capabilities that non-RDF systems do not have, we essentially per-
form backward and forward chaining as described in Section 2.

Here we briefly describe the data models used for graph data rep-
resentation, and techniques for to express graph pattern matching
queries in them.

4.1 Resource Description Format
RDF and the SPARQL query language are the standard data rep-

resentation and querying format in the Semantic Web domain. It
views the data as a collection of (subject, predicate, object) triples,
each describing a statement. An object can be either a literal value,
or a URI which refers to a subject in another triple. This way, the
RDF representation naturally describes a graph where subject and
object are nodes, and the predicate is the label of an edge between
them. Note that this matches the graph model described in Sec-
tion 3.

4.2 Property Graph
The property graph model goes beyond RDF and allows nodes

and edges in the graph to have an arbitrary number of properties
(key/value pairs), in addition to labels. We use a natural mapping
between the RDF and PG models: whenever a triple (S, P,O) has
a literal value in O, we model (P,O) as a property-value pair of
the node S. Otherwise (in case O is a URI), the triple describes an
edge between two nodes S and O with the label on the edges P .
This way, not all the triples in the RDF graph become edges in the
PG model, making it a (conceptually) less verbose model.

4.2.1 Cypher Query Language
At the moment the only declarative query language developed

for the property graph model is Neo4j’s Cypher. Like SPARQL,
Cypher allows to specify a subgraph in the MATCH clause with con-
stants and variables in place of nodes and edges to be matched.
Additional constraints on properties of nodes and edges can be
expressed in the WHERE clause which is similar to SPARQL’s
FILTER clause. Consider LUBM query 7 that asks for all the stu-
dents that attends classes taught by a certain professor:
match
(x)-[:TakesCourse]->(y)<-[:TeacherOf]-(z)
where z.id=’AssociateProfessor0’
return x,y

Here, the relationship TakesCourse between nodes x (students)
and nodes y (courses) is expressed with the ASCII-art pattern
(x:Student)-[:TakesCourse]->(y:Course), which is
further extended by matching all edges TeacherOf between cour-
ses y and professors z. Unlike SPARQL, relationships between

nodes can have multiple properties themselves. Moreover, it is pos-
sible to query the paths between nodes.

4.2.2 Query by API
When the graph store does not support any declarative language,

as it is for example the case with the Sparksee system, one has to
rely on a series of API calls. Specifically, all the cases of graph
pattern matching (matching neighborhoods, triangles, paths) boil
down to multiple calls of API functions that return nodes/edges of
a given label and immediate neighbors of a given node. The fol-
lowing code snippet illustrates a part of LUBM query 2 that looks
for all departments of all graduate students:

Objects gradstudents = graph.select(
type, Condition.Equal,
v.setString("GraduateStudent"));

Objects departments = graph.neighbors(
gradstudents, memberOf,
EdgesDirection.Outgoing);

The first API call returns all graduate students (all the nodes
whose type attribute is set to GraduateStudent), the second
function gets all the neighbors of the students from the first func-
tion.

4.3 Relational Model
Finally, graphs and pattern matching problems can be formu-

lated in the relational domain as well. In order to do so, we assume
that every node belongs to one particular type (e.g., Student)
with a fixed set of properties that we statically determine. These
node types we translate into relations. Further, we store the re-
lationships between nodes in mapping tables. For instance, the
TakesCourse relationship stores connections between Students
and Courses. Once the schema for the entire dataset is defined,
we create indexes, e.g, on the create ID and URI as well as the
Person name, to speed up lookups and joins.

Note that this assumption about a fixed schema for nodes holds
in the majority of practical use cases. Obviously, this is especially
the case for the synthetic LUBM data. However, this is true even
for real-world RDF datasets [6].

In our experience SQL queries for graph pattern matching are
very verbose: indeed, the fact that relationships are stored as sep-
arate tables means that a single hop lookup in the graph conceptu-
ally translates into two joins. As an example for this issue consider
LUBM query 3 which finds all publications of a given professor.
The query can be mapped to SQL as follows:

select P.URI
from publication P, faculty A,

publicationAuthor PA
where A.URI=’AssistantProfessor0’
and PA.Id1=P.Id
and PA.Id2=A.Id;

On the other hand, using SQL and the relational model for graph
pattern matching allows us to leverage decades of development
in transactional processing, query optimization and system tuning.
Relational database management systems (RDBMS) can become a
particularly attractive option for “hybrid” datasets, where only part
of the data is a graph, while some information comes in tables.

5. SYSTEMS
After we have surveyed the ways to conceptually model graph

pattern matching problems in different areas, in this section we de-
scribe the systems we use for our empirical evaluation.

5.1 RDF Databases
5.1.1 Virtuoso

We use open-source versions of Virtuoso 6 and 7 as represen-
tatives of RDF quadstores. Virtuoso is a de-facto relational store
that models RDF graph as a single table and translates SPARQL
queries into SQL. Virtuoso 6 is a row store that keeps two full B+-
tree indexes on quadruples (PSOG and POGS). In addition, three
partial indexes SP, OP, GS are stored. Virtuoso 7 is a column store
that takes advantage of compression scheme and vectored execu-
tion suitable for relational column stores.

5.1.2 TripleRush
TripleRush is a research RDF database that is based on the Sig-

nal/Collect framework [9]. It represents the triple data as partially-
evaluated read-optimized patterns, matches a given query’s graph
pattern against those in parallel and then builds the results from the
matched parts. This can be compared to join indices. We include
TripleRush in our evaluation because it represents a novel approach
towards SPARQL query processing that offers competitive query
evaluation performance.

5.2 Relational Databases: Virtuoso
Since Virtuoso is a relational store as well, it is a viable solution

for our relational mapping of LUBM. Note that our mapping is
hand-tuned. Thus, it greatly differs from the schema that Virtuoso
natively uses for RDF data.

In order to simplify matching the variable length paths we re-
wrote the SQL queries using domain knowledge such that matching
suborganizationOf becomes a two-way join. This is possible
since the hierarchy of that edge is only up to two-hops high. In
general, one would need to rely on recursive SQL features to avoid
making such assumptions about the data.

5.3 Graph Databases
Most native graph databases implement the PG model directly or

indirectly. In this paper we talk about two systems that do so.

5.3.1 Neo4j
Neo4j is an open-source native graph database. that offers func-

tionality similar to traditional RDBMSs such as full transactional
support, a declarative query language (Cypher), availability and
scalability through a distributed version. The major benefit of Neo4j
is its intuitive way of modeling and querying graph-shaped data. In-
ternally, it stores edges as double linked lists. Properties are stored
separately, referencing the nodes with corresponding properties.

We access the graph pattern matching functionality of Neo4j by
means of its query language Cypher. We access the query endpoint
via a Java API that comes with the Neo4j distribution.

5.3.2 Sparksee
Sparksee is a proprietary native graph database. Internally it is

a disk-based system that relies on B+-trees and compressed bitmap
indexes to store nodes and edges with their properties. Sparksee
provides access to data via custom API functions (we use the Java
version of the API). The API contains a set of primitive operations
on nodes and edges like adding/deleting nodes or extracting neigh-
borhoods. In addition, the system provides native implementation
of core graph algorithms such as connected component detection,
shortest paths as well as different traversals. The reported use-cases
for Sparksee include various types of graph analysis such as cluster
and outlier detection.

50 50 Inf 8000 8000 Inf
Neo4j 0:01:38 0:01:46 3:32:48 4:18:57
Sparksee 0:02:00 0:02:03 26:25:11 27:06:41
TripleRush 0:03:39 0:03:40 - -
Virtuoso 6 0:05:56 0:07:31 timeout timeout
Virtuoso 7 0:00:36 0:01:09 1:56:42 2:00:20
Virtuoso 7 Rel 0:00:32 - 1:50:07 -

Table 2: LUBM dataset loading times, in hours

6. EVALUATION
This section describes the setup and results of our experiments.

We will distinguish between the two variants of LUBM benchmark:
one will use inferred dataset, where all the facts implied by the
ontology are added; another will operate on the original dataset but
re-write the queries to account for ontology rules.

6.1 Experimental Setup
We ran our experiments on a server with two quad-core Intel

Xeon X5570 CPUs @ 2.93 GHz and 64 GBs of main memory.
The used operating system was Ubuntu Linux 14.04 with kernel
3.13.0-24. In our benchmarks we used the following versions of
the database systems: Virtuoso 6.1.8, Virtuoso 7.1.0, Neo4j 2.0.1,
Sparksee 5.0.0 and TripleRush received on March 26, 2014. All
our test drivers were implemented in Java 6 and executed using the
Oracle runtime version 1.7.0_25.

We configured all databases to use the entire system memory.
Furthermore, Neo4J’s interface allowed us to split the memory
across caches (for nodes, edges, property, string stores).

Note that Sparksee, Neo4j and TripleRush were run in the same
process as the test driver, whereas Virtuoso was run as a separate
process. For the latter the communication between the database
and the test driver was performed via JDBC.

6.2 Loading
Since the LUBM data generator outputs RDF XML files, loading

the benchmark data into Virtuoso (both version 6 and 7) is straight-
forward. In order to convert the generated RDF file into the PG
model, we sort and group RDF triples on subject. Then, the subject
becomes a node, its literals create the properties of the node, while
URI objects turn into nodes connected to the subject via an edge
marked with the predicate. The resulting graph is serialized in the
CSV format. It is then loaded into Neo4J using the built-in bulk
loader; the Sparksee database is populated using the API for cre-
ating individual nodes and edges. In both databases we created all
the relevant indexes on node IDs and node types. For the relational
model, we create a CSV file for every relation, and then load them
using Virtuoso’s bulk loader. In both cases, the time to generate
CSV files is not included in loading time.

Loading times are given in Table 1. Note that TripleRush runs
out of memory for LUBM-8000. Virtuoso 6 was not able to load
the large dataset within 30 hours.

6.3 Results
In this section we report the runtime results for the queries across

all systems for both variants. Each query is run 10 times in warm
cache, we report the average time. Due to a lack of space we do not
report the cold cache runtimes.

6.3.1 Re-written queries
The runtime of all the queries is given in Figure 1 and Figure 2

for LUBM-50 and LUBM-8000, respectively. The runtimes of 106,

1

10

100

1000

10000

100000

1000000

Q2 Rew Inf Q 4 Rew Inf Q 5 Rew Inf Q 6 Rew Inf Q 7 Rew Inf Q 8 Rew Inf Q9 Rew Inf Q 12 Rew Inf Q 14 Rew Inf

Neo4J Sparksee TripleRush Virtuoso 6.1 Virtuoso 7.1 Virtuoso 7.1 Relational

Figure 1: Benchmark results for LUBM 50, query runtime in ms

i.e. the bar reaches the top of the graph, indicate that the query
timed out (took more than 10 minutes). For almost all the queries,
the fastest system is Virtuoso. In Query 6 ("find all students"), how-
ever, Neo4J is faster than Virtuoso: we believe this is caused by the
fact that Neo4J runs in the same process as test driver, so it avoids
communication costs. Sparksee is fast for all the queries on the
LUBM-50 dataset where the starting point of pattern matching is
given and the amount of intermediate results is small. However,
for LUBM-8000 dataset it is significantly slower than Virtuoso.
Moreover, for queries like LUBM 6 and 9 it times out on the large
dataset, since these queries require non-trivial query optimization
effort that should avoid materialization of intermediate results (es-
sentially those queries match triangles). We observe that the per-
formance of Neo4j is even worse: on the larger dataset it times out
for the majority of queries on LUBM-8000.

The row store Virtuoso is faster that column store only for Query
14 that returns all undergraduate students, since it essentially a look
up of all rows with the same subject.

TripleRush seems like an competitive option for parallelized pat-
tern matching in small-to-medium datasets. However, even for
LUBM-50 it consumes more than 14 GB of RAM, which seems
like a prohibitive cost for larger datasets: we were not able to load
the LUBM-8000 dataset on our test machine.

Virtuoso Relational is faster than competitors for queries that ex-
tract multiple attributes of nodes or unselective queries. The per-
formance deteriorates as the query pattern becomes more complex.

In additional measurements we showed that the re-written queries
on Virtuoso are faster than the Virtuoso’s built-in inferencing. For
a lack of space we omit these numbers in our figures.

6.3.2 Inferenced dataset
Figure 1 and Figure 2 also provide the runtimes for queries over

the inferenced datasets (LUBM-50 and 8000, respectively). Since
all the facts implied by the ontology are in the database, the queries
become simpler (see Appendix for full text of queries). This in-
fluences the results of all systems (except Neo4j), they become
slightly faster across all the queries. As in previous case, Neo4j
times out for majority of the queries.

6.4 Analysis
6.4.1 Declarative vs Imperative Query Languages

Our systems under test use either a declarative language (Cypher,
SPARQL, SQL) or API (Sparksee). For the former, the system’s
optimizer has to figure out the optimal execution plan, while for
the later the execution plan is the responsibility of the developer.
The latter approach has several disadvantages. First, in Sparksee

the intermediate results of API calls are immediately materialized
and returned to the application, hurting the overall performance.
Second, the application that uses this approach fixes the order of
the operations to be performed, thus, providing an execution plan
of the query. This way the application developer has to perform
the work of a database query optimizer. Additionally, since query
parameters may greatly affect the query plan, one would need to
provide several implementations of the same query to account for
changes in the appropriate execution strategy as it may change de-
pending on the cardinalities of the input data or query parameters.
Finally, this approach is the most labor-intensive for the application
developer: in our experience, a single line of Cypher translates to a
hundred lines of Java code using the Sparksee API.

The results show that Sparksee, provided with the optimal plan,
achieves performance comparable with Virtuoso on the LUBM-50
dataset. However, for complex queries, such as Queries 9 and 12,
it is penalized for materializing intermediate results. We also note
that it does not scale well: for LUBM-8000 it performs much worse
than Virtuoso across most of the queries.

6.4.2 Query Optimization Issues
The declarative query language allows a system to employ sev-

eral optimization techniques, as discussed previously. However,
this requires having a sophisticated query optimizer; otherwise, the
system will be highly sensitive to how the query is formulated. We
observe, for example, that in Query 10 (and similar) changing the
order of predicates in WHERE clause of Cypher query influences
the query runtime up to 1.6 times. This indicates that the current
Neo4J’s query engine does not perform a cost-based query opti-
mization, and in fact executes the query as it is written.

6.4.3 Matching Path Traversals and Triangles
Although graph-specific operations are considered to be a selling

point of native graph stores, in reality these stores provide subop-
timal performance for pattern matching operations. We see that
fixed length path traversals and triangle matching can be efficiently
executed in a relational store. For example, in Query 8 and 12,
Virtuoso relational outperformes Neo4j by several orders of mag-
nitude. For the LUBM 8000 dataset, none of the path traversal
queries finished within 10 minutes on Neo4j.

Same observation holds for triangle matching: use of a declar-
ative query languange and the query optimizer of Virtuoso yield
an unmatched performance for Queries 9 and 12. We note that, to
the best of our knowledge, Virtuoso does not employ the special-
ized leapfrog-trie join for triangle matching, so its result could be
significantly improved.

1

10

100

1000

10000

100000

1000000

Rew Inf Q 4 Rew Inf Q 5 Rew Inf Q 6 Rew Inf Q 7 Rew Inf Q 8 Rew Inf Q 9 Rew Inf Q 12 Rew Inf Q 14 Rew Inf

Neo4J Sparksee Virtuoso 7.1 Virtuoso 7.1 Relational

Figure 2: Benchmark results for LUBM 8000, query runtime in ms

6.4.4 Result Materialization
Some of the queries, e.g. query 6 and 14, yield a lot of results.

We see that transferring these results to the application can signif-
icantly impact a query’s runtime; for simple queries we observed
runtime degradations of more than three orders of magnitude. This
poses a challenge for all systems under test. For Sparksee, however,
not only queries with many final results but also those with a lot of
intermediate ones cause performance problems as all intermediate
nodes along with their properties (e.g. names and email addresses)
are transferred to the application.

7. RELATED WORK
Benchmarking graph and noSQL database systems has recently

attracted a lot of attention in academia. Usually specific bench-
mark are limited to testing specific micro-operations (like getting
neighborhoods of individual nodes or finding shortest paths be-
tween pairs of nodes) [2, 4], or only consider medium-sized graphs
(up to few million edges) [1, 2, 5]. The LUBM benchmark, on
the other hand, has been used as an instrument of comparison of
RDF stores, although, as we have seen, it offers a convenient way
of comparing graph pattern matching capabilities of very different
systems.

This work can be thought of as a continuation of [10], where the
shortest path algorithms were considered on a variety of systems,
with an conclusion similar to ours.

8. DISCUSSION
As we have seen, in terms of performance, modern graph stores

have little to offer for pattern matching-intensive applications: a
significant amount of queries timed out for LUBM-8000 on both
Sparksee and Neo4j. We note that in some cases Sparksee had
an advantage of executing the optimal query plan, since we have
written queries as Java programs that calls API functions of the
system. While TripleRush seems like a competitive option, one
has to keep in mind that it is still a research prototype; moreover, it
does not scale for large graphs due to its prohibitively large memory
usage. This disadvantage seems to be an inherent property of the
approach itself, and not merely of the current implementation.

However, this comparison is intentionally one-sided (for the pur-
pose of this paper). In reality, users opt for native graph databases
for their intuitive modelling of graph-shaped datasets and "query
by example" capabilities that come with it. Moreover, modelling
graph-data as purely relational, while possible for synthetic data
of LUBM, quickly becomes hard for real-world "messy and noisy"
datasets, which frequently can be split into more regular and purely

graph parts. Another downside of modelling graph data in rela-
tional model and then querying it with SQL is its inflexibility and
error-proneness as a result of mismatch between the graph model
and the query language.

It is our belief, backed by the performance comparisons of this
paper, that hybrid systems that extend relational stores with graph-
specific operations and graph query languages, will be the best fit
for pattern-matching and general graph analysis problems. An ex-
ample of such a bridge between relational and RDF world is given
in [8].

References
[1] D. D. Abreu, A. Flores, G. Palma, V. Pestana, J. Piñero,

J. Queipo, J. Sánchez, and M.-E. Vidal. Choosing between
graph databases and rdf engines for consuming and mining
linked data. In COLD, 2013.

[2] R. Angles, A. Prat-Pérez, D. Dominguez-Sal, and J.-L.
Larriba-Pey. Benchmarking database systems for social net-
work applications. In GRADES, page 15, 2013.

[3] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for
OWL Knowledge Base Systems. Web Semant., 3(2-3):158–
182, Oct. 2005.

[4] S. Jouili and V. Vansteenberghe. An empirical comparison of
graph databases. In SocialCom, pages 708–715. IEEE, 2013.

[5] P. Macko, D. W. Margo, and M. I. Seltzer. Performance intro-
spection of graph databases. In SYSTOR, page 18, 2013.

[6] T. Neumann and G. Moerkotte. Characteristic sets: Accurate
cardinality estimation for rdf queries with multiple joins. In
ICDE, pages 984–994, 2011.

[7] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new
developments in the theory of join algorithms. SIGMOD
Record, 42(4):5–16, 2013.

[8] M.-D. Pham. Self-organizing structured rdf in monetdb. In
ICDE Workshops, pages 310–313, 2013.

[9] P. Stutz, M. Verman, L. Fischer, and A. Bernstein. Triplerush:
A fast and scalable triple store. In SSWS@ISWC, pages 50–
65, 2013.

[10] A. Welc, R. Raman, Z. Wu, S. Hong, H. Chafi, and J. Baner-
jee. Graph analysis: do we have to reinvent the wheel? In
GRADES, page 7, 2013.

APPENDIX
A. CYPHER QUERIES

2.

match (x:GraduateStudent)-
[:MemberOf]-(z:Department),
(x:GraduateStudent)-
[:UndergraduateDegreeFrom]-(y:University)
<-[:SubOrganizationOf]-(z:Department)
return x, y, z

4.

match (x:Professor)-[:WorksFor]
-(y:Department)

where y.id=’University0’
return x.name, x.emailAddress,
x.telephone

5.

match (x:Professor)-[:MemberOf]-
(y:Department)

where y.id=’University0’
return x

6.

match (x:Student) return x

7.

match (x:Student)-[:TakesCourse]
-(y:Course)<-[:TeacherOf]-(z)
where z.id=’AssociateProfessor0’
return x,y

8.

match (x:Student)-[:MemberOf]
-(y:Department)-
[:SubOrganizationOf*1..2]-(z)
where z.id=’University0’
return x, y, x.emailAddress

9.

match (x:Student)-[:Advisor]
-(y:Professor)-[:TeacherOf]-(z),
(x)-[:TakesCourse]-(z:Course)

return x, y ,z

12.

match (x)-[:WorksFor]-(y:Department),
(y:Department)-[:SubOrganizationOf*1..2]-
(uni),(x)-[:HeadOf]-(z:Department)
where (x:FullProfessor) and
(uni.id=’University0’)
return x, y

13.

match (x)-[:DoctoralDegreeFrom|
MastersDegreeFrom|
UndergraduateDegreeFrom]-(y)
where y.id=’University0’
return x

14.

match (x:UndergraduateStudent)
return x

